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Abstract

When Isaac Newton’s “De Analysi...” was finished in 1669, it detailed
a method for approximating solutions to polynomial equations. Today, the
root-approximating algorithm referred to as the “Newton Method” differs sig-
nificantly from what Newton described in “De Analysi. .. ”. In Newton’s time
it was a purely algebraic method for approximating roots of polynomials. To-
day it can approximate the roots for any type of function, and its rendition as
the "Multivariate Newton Method" can be used to approximate the solution

of an n x n system of multivariate, non-linear equations.

In Part 1, this essay investigates the evolution of the single-variate for-
mulation of the Method from 1669 to the modern day. It investigates how,
and thanks to whom, did Isaac Newton’s Numerical Method arrive
at its current formulation? To arrive at an answer to the question, it fo-
cuses on Newton and his successors, Joseph Raphson and Thomas Simpson,
during the 17** and 18" century. The investigative approach taken consisted
of matching key stages in the Method’s mathematical development to the
work of each of these men. It analyses the mathematical importance and
limitations of these key stages, and how each led to the next.

In a preliminary comnclusion, it demonstrates that Newton simply con-
ceptualized the Method; it was Joseph Raphson who then introduced direct

iteration and later Thomas Simpson who linked it to calculus.

In Part 11, the essay analyses Simpson’s further development of the Method,
proceeding to conclude that Simpson then set up the algebra from which the
multi-variate formulation of the Method can be derived. This was something
that Simpson himself was not able to do for at the time matrix algebra, essen-
tial to this 20" Century rendition of this method, had not yet been invented.

Words: 279
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1 Introduction

Newton’s Numerical Method can be referred to as an iterative algorithm that
employs differential calculus to arrive at successively closer approximations
to the root of a function. Despite being named after Isaac Newton, a brief
glance through Newton’s "De analysi per aequationes numero terminorum.
infinitas " (
demonstrated his Method, will reveal that the Method he detailed was very
different from what we today know as the Newton Method. This indicates

The amnalysis of Equations of Infinite Terms), where Newton first

that Mg, it must have undergone substantial change since Newton's work in
"De Analysi...".

This essay aims to clarify the road that the Method took from the 17
Century to the modern day. A road that is unknown even to many that
use the Method every day. Understanding the Method’s evolution can pro-
vide an understanding of its roots and the key stages which contributed to
its development. Furthermore, this understanding can clarify who deserves
what credit for the method’s effectiveness today. In short; how, and thanks
to whom, did Isaac Newton’s Numerical Method arrive at its cur-
rent formulation? To answer this question it is erucial to understand the
Method’s contemporary formulation and compare it to what Newton detailed
in his "De Analysi...". Once this contrast is established, it is then possible
to fill in the gaps and trace how the work of Newton’s successors contributed
to the Method’s evolution.

'Newton, 1669 (p. 218-223)



Part 1

Single-Variate Formulation

2 The Newton Method Today

Definition 1 If = is a close approzimation to the root of a real function

f(z), then a closer approzimation Ty can be obtained by:

Tyl = ‘Tk‘% (2-1)

This is the most common formulation of Newton’s Numerical Method. ouh\.. WAWL‘-Q
The reasoning behind 2.1 can be derived from Taylor’s Theorem. Given a Ai{-g? ﬂ‘m\'r'\'a\_-p.v_,
function f(x), the first order Taylor series approximation at a point zj is a

linear equation:

fla) = f(z) + £ (zi) (@ — )

If the initial estimate z; is accurate enough, the root of this linear approxi-
mation is close to the root z of the function (assuming convergence). Let us

assume that the solution of this linear is in fact the root of f(z). Now solving

for the z: eo\m&-‘.ml? wiwicw /.
F(xi) + fl(ze) (@ —a) = 0 Net
flan)(@—z) = —flzw) v Cieg
A T — ~{(:‘rl‘k) Whalt  does \'L\i‘:»
P, 0 4 f(:Ek-) Q.-.\J\-m s
F'(@)

For successive iterations, the argument z is essentially zj4;, making this

result effectively equivalent to 2.1. 7 ?
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Example 1 Consider y = x? 4+ 32 — 1
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Tllustration of y = 22 + 3z — 1
taking the first order Taylor series approximation at x; = 0.4
flw) = flog) + [ (@ — )
~ f(0.4)+ f(0.4)(z — 0.4) A\\ DA AM ?Q

\.‘} \-\-e\' Q V U\&
equating to zero

£0.4) + f(0.4)(z—04) = 0
f(04)(z—04) = —f(04)

f(0-4)
z—04 _f’(0.4)
> f(04)
L= e
(0.4)2 +3(0.4) — 1
s (2(0.4) + 3)

= (.305263 1579

giving a value closer to the real root of the equation. This can also be illus-

trated by drawing a tangent on the graph of y = a* + 3z — 1 at the estimated



root using the first order Taylor series approzimation above:

12

f(0.4) + f'(0.4)(x — 0.4)
(0.4)* +3(0.4) — 1+ (2(0.4) + 3)(z — 0.4)
y ~ 3.8—1.16

f(z)

12

l
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03T

Ilustration of y = 2? + 3z — 1 (solid) and its Taylor series aproximation at
0.4 (dashed) y = 3.8z — 1.16.

Visually, the new estimate for a root 0.305 is in fact much closer than the
initial estimate 0.4. This can be repeated successively for closer approzima-

tions. “T\Niwwu(‘v\“ Newown wadao

Las u.u\ \ease

eyt wrveck Wel

However, the reasoning featured above and the formulation of 2.1 did
not feature in any of Newton’s works. Tracking its evolution can determine
how the method went from being a purely algebraic method during Newton’s
time, to today being used recursively and incorporating calculus in order to
approximate roots of an equation. Previous papers have been written on the
subject of the evolution of Newton’s Method, often either advocating skepti-
cism of Newton’s work (N. Kollerstrom) or arguing his superior contribution
compared to his successors (1. Ypma). To approach this investigation it is
important to take into account the conclusions of previous papers written
about the Method. However, the goal is to ultimately draw a link between
the work of Newton and the Method as we know it today, and analyzing that

link such as to reach an objective conclusion.

SIE Sl



3 Isaac Newton’s Work

Conceptualization

The earliest printed account of Isaac Newton’s (1642 - 1727) work on
The Method is in John Wallis’ “A Treatise. .. ” of 1685.2 Newton's own text
developing the method ( "De Analysi...") was only published later by William
Jones.? In spite of this, his method was known to various mathematicians at
the time, mainly through circulations of copies of his manuscripts.

Newton took an algebraic approach to the problem of approximating roots
to a function. He also credited the work of Viéte as an inspiration for this

method*:

Definition 2 For any f(z) where X is a real root and z is a close approa-
imation, z + p is a closer approzvimation®. Solving for p and repeating for
successively introduced variables will give consecutive "adjustments” to the
initial estimate such that z +p + g + v + ... will result in an ever closer

approzimation to X.

Example 2 As first used by Newton to demonstrate the method (detailed in.
John Wallis’s “A Treatise...”):

y=2>—2r—5 (3.1)

By creating a sign table

f(x) Sign

1—2—-5=—6 | Negative
8—4—5=—1 | Negative
27— 6—5=16 | Positive
64 — 8 — 5 =051 | Positive

||| K

we can see a sign change (and hence a root) around x = 2, therefore 2+p = X.

*Wallis, 1685

YYpma, 1995 (p. 537)

' Thid, (p. 540)

?Note: In Part | of this essay, z denotes an initial estimate for the root, a constant



Hence:

2 —2x—5 = 0

o = 2FD
= (24+p)®-202+p) -5 = 0
p® 4+ 6p> +10p—1 0 (3.2)

The two terms p® and 6p* can be ignored as p has such a small absolute
value that when squared and cubed it becomes insignificant to the equation.

Hence:

W0p—1 ~ 0
g i O

Newton then continued using the same logic, introducing a new variable al

each iteration:

p3+6p2+1[}p—1 == "0

P = Wl+g
— (0.1+¢)*+6(0.1+¢)?+1001+g)—1 = 0 (3.3)
P +6.3¢° +11.23¢+.061 = 0

Again ignoring the cubic and quadratic terms:

11.23¢+.061 =~ 0

0.061 _

PR . By -
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Tterating once more:

¢® +6.37+11.23g+.061 = 0

g = —0.0054+7 (3.4)

(3.5)

= (—0.0054 + r)* + 6.3(—0.0054 + r)*+ (3.6)
+11.23(—0.0054 + ) + .061 = 0

73 4+ 6.283872 + 11.162r + 0.000541551 0 (3.7)
11.162r 4 0.000541551 ~ 0
—0.00004852 r

The method can be continued for as many iteralions as desired. However, it
18 evident that the method wuses litile more than polynomial manipulation and
continwous summation to approzimate the rool. The final step is to suwm all

of the variables together to get the total offset from the initial estimation:

X Zbndge (3.8)
= 2+0.1—-0.0054 — 0.00004852
2.09455148 (3.9)

SoX =~ 209455148

This is correct to eight decimal places (for r, the last substituted variable,
has eight decimal places). The rate of convergence of Newton’s method is

a rather complex theme, and outside the scope of this essay. However, let

118 go under EMQB that, despite the suggestions of Myron Pawley®,
Maseres was right in saying that if “one step of the Newton Method is right
to n decimal places, then the newxt step will be right to 2n”." This suggests
quadratic convergence (i.e. the number of correct decimal places doubles with

each iteration).

One can now begin to understand that the method originally employed
by Isaac Newton bears little resemblance with what is today known as the

“Newton Method”. Firstly, it is not directly iterative. There is no recursive

“Pawley, 1940 (p.113)
T hid. (p.114)

7
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formula into which one reintroduces the approximation that was retrieved in

the last iteration. Instead, a new expression must be formulated ([3.2], [3.3],
(3.7]) in different variables every time we wish to iterate and then sum the
value of these variables must be taken at the end [3.9]. Furthermore, there
is absolutely no connection between the method and Newton’s “Method of
Fluxions”, or today’s differential calculus. These two main differences were
highlighted by Nick Kollerstrom® as the primary indicators that there were
more important contributions to the method later on.

It is important to note that this method works with polynomials, but it is
impossible to apply to non-polynomial equations without the implementation
of other mathematical tools. Nonetheless, it was this formulation that was
developed by Isaac Newton. It constituted the first step in this long journey
of mathematical development. Despite its limitations, detailed below, it was

still of some use at the time, and the start of the Method’s development

Example 3
y=234+3z-5 (3.10)
Again. making a sign table
x | fix) Sign
1(143=6=—1 Negative
2| ¥24+6—5= V2 + 1 | Positive

Root between 1 & 2, closer to 1:

145 = &
1+p)2+30+p)—5 = 0 (3.11)

At thas point the first term of [3.11] can no longer be easily simplified without

Jurther techniques (such as a Binoemial Expansion or Taylor Series approxi-

mation,).

*Kollerstrorm, 1992 (p, 347)



Example 4 Let us observe the method at work with a trigonometric function.

For Ezample, y = sinz; Solution around x =3 :

g = ging (3.12)
Jdp = &
.y = sm(3+p)

0 = sin(3+p)

= sindcosp -+ sinpcos3

—sinpeosd = sin3y/1 —sin’p

sin®pcos?3 = sin?3(1 —sin’p)
sin® p cos’3 = sin®3 — sin® 3sin® P
sin? pcos® 3 +sin® 3sin®p = sin?3
sin® p(cos? 3 + sin® 3) sin® 3
sinp = sin?3
sinp = sind

p = 3+k2worm—3+ k27 (3.13)

If we choose p= 3+ k2m, the method diverges instead of converging. Alterna-
tively, while it is possible to find the root with p = 7 — 3+ k2w, we are having
lo refer to the periodicity of trigonometric functions (i.e. recognizing that p

can equal ™ — 3+ k27):

=
I

sin(3 + p) = sin(3 + 27 — 3)

0 = sin2n

Ultimately we are given a solution in terms of @, not a numerical solution.
Since the method’s purpose is finding the numerical value of m, il does not
work. This is an example of circular reasoning: an answer can only be found
of it is already known. Additionally, it must be recognized that the sleps are
heavily algebraic and it takes a rather long time to set up each step (the whole
of .12 — 3.13 being only one iteration). From this perspective, it is simply nol
practical, and would be more complex: to program into a modern day computer
than the Newton Method known today.



4 Joseph Raphson’s Work

Direct Iteration

Direct Iteration was introduced into the method by Joseph Raphson (1648
- 1715). Although he published his work before Newton (1697), his work could
have been inspired by Newton’s unpublished work. Regardless, Raphson pub-
lished his “Analysis...”" with an almost insignificant reference to Newton,
and without any definite credit of having based his method on his contem-
porary’s work'’. Raphson’s method for finding the roots of equations bears
its similarities to Newton’s, but makes a very important breakthrough; it is

directly iterative.

Proposition 1 Suppose that for the function
az® + bz’ 4 ez +d=0 (4.1)

There is a real root at xg. Suppose a close estimate to this root is z. Then
z 4+ p is a closer approzimalion. Substitute z + p for x, and use binomial

expansion to arrive at an expanded form.

alz+pP +b(z+p)? +c(z+p)+d = 0(4.2)
az® + 3az2p - 3azp2 4 ap3 +bz? 4+ 2bzp + bp2 +ez4+ep+d = 0(4.3)

At this point we can implement similar logic as that used in the previous
section. Because p is a minute difference, powers of p will be relatively in-

significant. Hence the expression can be reduced to:

az® 4+ 3az2p+ b2 + Wzp+ ezt ep+d ~ 0

—(3az’p+2bzp+ep) = azd 40P +ez+d
azd + bz +cz+d

%= 3az2 +2z+¢ = ¥

Conclusion 1 If z is a close approzimation to the real root of ax® + ba? +

ce +d =0, then a closer approximation is: |
T A\ MGG Wwa ba e ‘E-\-—Loua\»\

i )
\"J\"“a azd + bzt +ecz+d
3az? + 2bz + ¢

“Raphson, 1690 (p. 5, 7) 1 ‘A = W\ \- o g
] 1 3 v Pe - A ® - ‘:,\"\n : ¢
"Kollerstrom, 1992 (p. 348) A VA j t\L\'I\ 3 uu\( ¢ wé L \r wy r_!\-\\m

\
=

(4.4)

10



Example 5 Newton’s y = 23 — 2x — b with an initial estimation of xq = 2 :

#3 -2z —5
&€ry = ﬁo—w
23 —9%%—5
720:2:?271 = Q—W
o 2 —2x2-5
T 3 xDe—3
—1
= 2—7
10
= &1 A {,Mm\y% - }
g?— 2z —5 NOT a \-(wﬂ
Ny =" =
3z —2
g - 25
- 211_2.1 2><‘2.1 b
3% 2122

= 2.1 —.0054 = 2.0946

B —2%—5

S
2.0946% — 2 x 2.0946 — 5
= 2.0946 —
0 3 x 2.0946% — 2

= 2.0946 — .00004851
= 2.09455149

This has resulted in a general recursive formula for approximating any
cubic. Indeed it is possible to create a recursive formula for every degree
polynomial. Raphson created these formulae for polynomials up to the tenth
power. Raphson did not, however, attempt to create these sorts of general for-
mulae for other (transcendental) types of equations. This is possibly because
his method relies on binomial expansion, which is not present in transcenden-
tal functions.

The binomial expansion featured in Raphson’s work is also in Newton's
(note similarity between [3.2] and [4.2] or [4.3]). However, Raphson instead
opted to find a general solution in terms of z and p instead of attempting
to solve for a constant at every iteration and then reintroducing a variable.
Although Newton tackled (and successively solved) Kepler’s Equation in his
Principia using a formulation'' of Raphson’s work, he did not link it to pre-

vious renditions of his own Method. In essence, it was a one-off use of a

"Ypma, 1995 (p. 542)

11



particular approach to a problem, and not the formulation of a method for

iteratively approximating roots (something only Raphson was able to do).

One instantly trike‘sh‘jf‘m connection between the numerator and the denom-
inator in [4.4]. The Tatter is the derivative of the former. This was, however,
a connection that was not made until many years later by Joseph Simpson.
An attempted explanation as to why Raphson did not spot the calculus in
the method is that many of the calculus developments of the 1690s (When
Raphson worked on this method) were made in mainland Europe whereas
Raphson was in England. Perhaps the reference of 1690s Leibnizian calculus
developments was De L'Hopital's " Analyse d’Infiniments Pelits", published
in 1696'2. This work certainly contained the required calculus to draw re-
semblance between the algebra employed by Raphson in his Method and
Differential Calculus. However, it seems as though Raphson was completely
unaware of it; his only calculus reference being Newton’s work featured in J.
Wallis' Opera Mathematica of 1693, it was insufficient to link the two fields
of algebra and differential calculus in this particular method.

It must be noted that as mentioned by Kollerstrom'®, Raphson was not
the only English mathematician who failed to appreciate Leibniz’s calculus;
Edmond Halley too failed to link his algebraic method to fluxions. This is
probably due to the fact that “new ideas take a while to become accepted”!”.
Even years later when Simpson drew the connection between the algebra of
the method and differential calculus, some might have argued that it was so

revolutionary that it might be wrong to connect the two fields so directly.

It is essential to analyze the importance of his method from a recursive
perspective; it is now much easier to perform successive iterations and arrive

at a root to the polynomial.

2y pma, 1994, (p. 543)

M Kollerstrom, 1992 (p. 349)
Y 1hid. (p. 350)

9 Ihid (p. 349)

12




5 Thomas Simpson’s Work

The Introduction of Calculus

Thomas Simpson’s (1710 - 1761) contributions to the method made it
what is today referred to as the “Newton” method for one single-variate
equation. Thus far, there is not a hint of calculus in the root- finding methods
displayed; ounly algebra is employed. Thomas Simpson, making no reference
to his predecessors whatsoever, published a method described so simply, he
correctly claimed it could be “of considerable use [compared to contemporary
methods]"™5. Tt was in his “Essays ... in ... Mathematicks”'" of 1740 that

he detailed a method (for approximating the roots of a function) equivalent!®

to (see Appendix for original text): W\Am\' s 6 7 i ,‘%\A«;.C\;: G’ﬂ?

d R(zy,

A(:Ek) = ER(T;”) — T4l = Tk — AET:;
= R(w)
Th4l = Tk — R’(G’:k)

stuch that 1f . is a close enough approximation to the root of a function R,

Tr — R, (;-. ) is a closer approximation xp .

ey

— ’&r\:\rw5 T wek \»-cmL b -ﬁmumy\

This 15 a differential calculus-based, directly iterative approach to ap-
proximating transcendental equations; or what is referred to as the Newton
Method. Note how it is essentially the same as [2 1] in Definition 1. As can
be seen in the original text, it is the first pubhsqud mentloumg 9{ the method
of fluxions in connection with the approximation method. The first piece of
evidence linking the work of the late 17th century and early 18th century
mathematicians, and the essential characteristic of the Newton Method to-
day., Not only did Simpson create a general formula linking the concepts of
caleulus and algebra within the method, but he also made it possible to apply
the method to any type of continuously differentiable function, and not just
the algebraic functions explored by Newton and Raphson. It is now possi-
ble to use this new formulation of the method to approximate the roots of

transcendental and evené:ﬁixe&l\) functions.

" Simpson, 1740 (p. vii) - ?

7 bid (p. 81) :

""Note: it wasn't until Fourier further developed more modern mathematical notation
a century after Simpson's publishing that this formulation of the Method was published.
(Fourrier, 1830)

13



Example 6 ,

flz) = sin(z®*—3z)+2°
—= f'(x) = cos(z® —3z) (22 —3)+ 2z
Tyl = Tk — Rlww)
-~ )

sin(wf — 3zy,) + 3
cos(a? — 3wg) (22 — 3) + 2u4

— &k = B

Iteration Number
1 2 3 4 5 6 7 8 9 10
Initial x Value 1.00000 | 0.96246 | 0.96181 | 0.96181 | 0.96181 | 0.96181 | 0.96181 | 0.96181 | 0.96181 | 0.96181

f(x) 0.09070 | 0.00152 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
fix) 2.41615 | 2.33391 | 2.33240 | 2.33240 | 2.33240 | 2.33240 | 2.33240 | 2.33240 | 2.33240 | 2.33240

Variables

0.96245 | 0.9618 | 09618 | 0.9618 | 09618 | 0.9618 | 0.9618 | 09618 | 0.9618 | 0.9618
New x Value 98257 10038 | 09829 | 09829 | 09829 | 09829 | 09829 | 09829 |09829 | 09829
84455 | 035607 | 001757 | 001736 | 001736 | 001736 | 001736 | 001736 | 001736 | 001736

Table 1: Tterations of the function y = sin(z? — 3z) + 2. Made using
Microsoft Excel. Precision of 15 decimal places according to EEIC floating
point number standards. Note: By the 4th iteration there is already a 15

d.p. accuracy.

14




Example 7

flz) = Inz+z?
1 2z% + 1
d;
= fi(z) = —+2z=
x T
- & R(zy.)
gl = Bp— =
R (zy)
Inzg + of
= Tkl = T — g
2::%—1—1
Iteration Number
1 2 3 4 5 6 7 8 9 10
initial xValue | 1.00000 | 0.66667 | 0.65291 | 0.65292 | 0.65292 | 0.65292 | 0.65292 | 0.65292 | 0.65292 | 0.65292
Variables | f(x) 1.00000 | 0.03898 | 0.00003 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
F(x) | 3.00000 | 2.83333 | 2.83742 | 2.83742 | 2.83742 | 2.83742 | 2.83742 | 2.83742 | 2.83742 | 2.83742
0.6666 | 0.6529 | 0.6529 | 0.6529 | 0.6529 | 0.6529 | 0.6529 | 0.6529 | 0.6529 | 0.6529
66666 | 09253 | 18640 | 18640 | 18640 | 18640 | 18640 |18640 |18640 | 18640
NewxValue | 666667 | 842097 | 413836 | 419205 | 419205 | 419205 | 419205 | 419205 | 419205 | 419205

Table 2: Iterations of the function y = Inz + z*. Made using Microsoft
Excel. Precision of 15 decimal places according to EEIC floating point
number standards. Note: By the 4th iteration there is already a 15 d.p.

accuracy.
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6 Preliminary Conclusion

Thus far it can be concluded that the Newton method, while bearing the
name of only one of its contributors, was the result of the efforts of multiple
men. It was thanks to Isaac Newton that the method was first conceived,
but in its crude shape it was of little use compared to the recursive definition
demonstrated by Raphson. Even so, it was not until Simpson introduced
calculus that the method was truly of great use for approximating the roots
of all types of functions. Interestingly, Newton was the only man who divulged
where the inspiration for his method came from. The other two men failed
to acknowledge any links between their methods mathematics of their peers,
suggesting they either came up with their methods themselves or where not

inclined to credit their predecessors

The reason for Newton’s name being associated with the Method is prob-
ably due to the fact that when leading mathematicians like Joseph Louis La-
grange (1736 - 1813) and Jean Baptiste Joseph Fourrier (1768 - 1830) wrote
their papers over half a century later, formulating the modern mathematical
notation of the Method, they referred to it by Newton's name, never refer-
encing the other contributors.!? With regards to the work of Lagrange and
Fourrier, it did not contribute to the method as much as it contributed to
mathematics itself, and the method inherently benefitted from these develop-
ments. However, at its core, and in terms of its efficiency, it did not change,
it was simply reformulated. While these men’s contributions to the Method
must not be overlooked, they were secondary to the work of the aforemen-
tioned others, and hence beyond the scope of this essay. Nonetheless, the
influential weight of these two men and their publications amongst the scien-
tific world sheds some light as to why today we usunally credit Newton alone

for this method’s development.

\rﬁw\." W \/\CU\IQ. Lw\ ’(N'u'v!o\ M«u* = Muf{(’/‘( Sl
Mt \Mg,M Lok S

(f!a—ﬁo\;\ b\ ™S

Y Cajori, 1911 (p. 29-32)

16



Part 11

Multi-Variate Formulation

7 Simpson’s Breakthrough
Extending the Investigation

Despite having formulated a partial conclusion for the initial question,
and having described the evolution of the method to its formulation [2.1], this
conclusion is potentially incomplete. To understand why, further analysis of
Thomas Simpson’s work is required. Although we have explained the evolu-
tion of the method’s singlevariate formulation, Simpson’s work hints towards
another formulation of the method which was not particularly significant in
it time, but evolved to much greater importance in the 20" Century. This
would become a multivariate version of [2.1], today known as the Multivariate
Newton Method.

2 Equations in 2 Variables

Simpson’s “Essays....” %" was a significant publication for the development
of the Newton Method as we know it. His “Case I”, as detailed above, handles
the root-approximation of single non-linear equations in one variable. Simp-
son did not, however, stop at this point; he proceeded to describe a similar
method for the approximation of the intersection of 2 implicit functions in 2
variables. Albeit more complex, it too is a significant achievement - not on
its own, but for the questions il raises and the path it leads to.

Simpson made no reference as to where he might have discovered inspira-
tion for this particular method, and leaves the reader to presume he intuitively
followed it through from his “Case 7. The definition below is interpreted us-
ing modern mathematical notation from Simpson’s own work. (See Appendix

for original text).

M Simpson, 1740 (p. 82)
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Definition 3 Tuake the partial derivatives with respect to each variable of the

two functions to be approximated. Giving them a variable name, “A” repre-
sents the partial derivative of fi with respect to x. Similarly, “B” represents

the partial deriwative of fi with respect to y. Lowercase “a” and ‘D7 are the

same but for fo.

%fl = A (7.1)
%fi = (7.2)
9ph = a (7.3)
a%fz 2 B (7.4)

The final step is to combine the above variables into two ad-hoc "multiples”

Az and Ay, to arrive at the value by which to adjust xp and y;., the initial

estimated coordinates of the intersection.?!

Br—bR . . 7
ﬁ GJ Ar E)C'?Q&'wkt\-()\f\ ;

aB—Ar ~
Ab—aB d

where R and v are the two equations being intersected: \}Q-«}\ \-w—g—r% g\—o;‘-(_ol

f1($=y) = R
fa(z,y) = r

Then, estimaling initial values of xp and y, of the intersection, the closer

values x 1 and yr 1 can be atlained by: \N\'v:ﬁ 7"—14\&4 Vel shown -
—_._‘__.____._-——l

Br — bR

— 7 — | =4
Tp41r = T+ Azp =z + Aol 7.5
aR — Ar
= Ay = S = 7.6
e Ll e i Ab—aB (7.6)

The great benefit of this method is allowing us to find the intersection

between two functions in their implicit form. For example, in the intersection

of [7.7]and [7.8]. Rl Baeiin 2.1

*'Note: Tn the Part IT of this essay, subscript & denotes the argument fo which the
subscript belongs evaluated at the k** iteration.
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Example 8 Intersection of fi(z,y) = 22 +y* — 10 and fo(z,y) = 223 — y*:

filz,y) = z+y*—10 (7.7)
Elag) = %a®—g? (7.8)

taking the partial derivatives of each function with respect to each variable:

d

0

9 2

8$f2 =gt (7.11)
d

5 fo = —2y=b (7.12)

taking variables Ry, and vy, the deviation from zero al the k™ iteration resul-

tant from xp and yy such that:

filze,ue) = By

fa(ze,ye) = Tk

and setting up the multiples as described by Simpson:

Br—bR  2yr+2R  4z®+22% - 20
Ab—aB =~ —Azy—122%y  —4z — 1222

aR—Ar  6a*R—20r  2u° 462y — 602 + 29°
Ab—aB = —dzy —12z% —4y — 122y

we can formulate recursively that:

Br — bR 423 + 227 — 20

e i TP S il
aR — Ar 223 4 6ay® — 602 + 22

= Yk+1 = Yrt Ab—aB = Yk F "4y — 12zy (7.14)

We have a recursive formula for finding the intersection of these particulor
functions. Below are results from a computer model created based on this
recursive formula to demonstrate the changing of the variables over each it-

eration.

Ao ﬂxc..w?Qﬂ b ot a e R
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Iteration Number

1 2 3 a 5 6 7 8 9 | 10

Initial Estimate x Value 2.000| 1643 1562| 1559 1559 | 1559 | 1559 | 1.559| 1.559 | 1559
Initial Estimate y Value 2000 | 2857 | 2753 | 2752| 2752 | 2752 | 2752 2352 2.752| 2352

== =}

R [ 2.000| 0862 0017| o0o000| 0000 o00O| 0000 ( 0.000| 0.000| 0000
" r 12.000| 0705 | 0052 | 0000 0.000| 0.000| 0.000| 0.000| 0.000| 0000
3 A 4000 3286 3125| 3a17| 3117 3137 3217 3..17| 3.7 3117
< B 4.000 | 5714 | 5505| 5503| 5.503| 5503 | 5503 | 5.503| 5.503 | 5503
= a 24.000 | 16.194 | 14.647 | 14.574 | 14.574 | 14574 | 14574 | 14.574 | 14.574 | 14.574

b 4.000 | -5.714 | -5505 | 5503 | 5.503 | -5.503 | 5503 | 5.503 | -5.503 | 5503

| 1 03

Change in x Value 0.357 | -0.080 | -0.004 | 0.000| 0.000| 0000| 0000 | 0.000| 0.000] 0.000
Change iny Value 0.857 | -0.105 | -0.001 | 0000| 0.000| ©0000| 0000 | 0.000| 0.000| 0.000

Table 3: Iteration of the formulas z,41 = x, + %and

Ao 228 +B2y? —602+2y2 ¢ v s g £ - $
Untl = Yn + = s for the intersection of the fuctions

fi =a? +y? — 10 and fo = 223 — ¢ Made using Microsoft Excel. Precision

of 15 decimal places according to EEIC floating poeint number standards.

As can be seen, from aboul the fourth iteration the error variables R and
r become insignificant (Smaller than 1072 marked as 0) very quickly. The
intersection arrived at is point (1.559,2.752).

This method, in spite of its significance for the mathematics of 1740, leaves
the modern day mathematician with two questions. Firstly, why did Simpson
not attempt to make a general method for all systems of equations, instead
leaving it in a formulation that requires an ad-hoc algebraic manipulation for
each set of equations? More importantly, why did he not extend his finding

to systems of more than two equations?
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8 The Multivariate Newton Method

n Equations in » Variables

Thus far we have seen how Simpson not only developed the Newton
Method of today for single non-linear equations, but also for systems of two
equations in two variables. However, his impact upon the field of numerical
analysis went deeper, and can still be seen today. It led to a method for
solving n functions in n variables. To illustrate this, let us employ a tool
that Simpson did not have in his lifetime: Matrices. The key lies in the

unexplained multiples of the previous section:

- T
waad Br—bR aR — Ar

L ey

We can organize these terms as matrices:

R g b B —R
Az = Nl [Ab—aB _Ab—a}i‘} » (8.1)
alR — Ar e o —R
Ay = Ab—aB = |:7 Ab—aB /lb-r:B} 'I‘ (82)

and if we join the two matrices in 8.1 and 8.2

b . B
|:Aba.B /lbaB:| - M
BN DN, .
Ab—aDB Ab—aD
A B
— M L =
i b

This astonishing yet simple result shows that the inverse of M is the
matrix of partial derivatives with respect to the functions’ variables such
'
What - X

¢
M, x Ry = AX| Wit i¢ @k .

that evaluated at the k™ iteration:

F!(_Tl>’{-0u\:3 "rv{ w\ﬁ rj
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Where Ry, is the matrix of the residuals, or values of the functions at k"

iteration:
R, — —R| _ | fi(ze,ve)
=i Folzr, i)

and where AX,, is the matrix of values to be added to = and y at the k"

iteration:
X, — Value of z at iteration k| |y
"7 | Value of y at iteration % Yk
AX, = Change in value of x at iteration k i E;:‘i’g
Change in value of y at iteration k iﬁ:{ﬁg i
such that??:
X =X+ AX, (8_3)

Using the result [8.3] we can recursively approximate closer values of vari-
ables x and y with each iteration. This successfully explains the multiples in
Simpson’s “Case 11”7, showing that both the algebraic and matrix approach
are linked. Hence, patterns developed in the matrix object should hold true

for the algebraic counterpart.

Proposition 2 Consider matrizc ML, It is a matriz of partial derivatives

organized as follows:

A B
w b

M =

5s By
o
2 fo g%.fz

such that
M, ! x AX; =Ry,

Now if we were presented with a case where instead of 2 functions in 2 vari-

ables, we had n functions in n variables

fila, gt — filer,og . my)

falzy) — folzi,2a...20)

fn.(m]_, LYias .'E.n)

22K effer, 1998
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then a similar scenario could be constructed. The matriz of partial derivatives

of the functions M~! can be expanded following the same principle such that

a a
5 " dedr ~ gl
i B
w5t
5z 2 dy 2
Here, the number of rows and columns is no longer restricted lo 2 x 2 as in
the M~! matriz as before, but is now n x n Vn € Z . This matriz of partial

kth

derivatives is known as the Jacobian Matriz J at iteration for a system

of functions whose value at place j,i can be defined?:

a s
(J34) = 3&;

simalarly, the malrices AXy and Ry can be redefined for n functions in n

vartables:
Change in T | Az
A cad -
Change in x,, | | Azy, .
— f1 value at kM iteration] [—fi(z1, 20,0 En)
Rk‘ . - .. P
—f, value at k* iteration | [ MW . .

Conclusion 2

ka AXk = Ry
Xit1 = Xp+AX;

LK = Kt J,‘Tle (8.4)

We are hence presented with the Multivariate version of the Newton Method.
The result summarized in [8.4] is a single line of notation linking the concepts
of Newton’s single-variate Method and matriz algebra for approzimating roots
of n equations in n variables . It is crucial to mark how this was derived from
Thomas Simpson’s work — something he was not able to do ot the time simply

because he did not have the mathematical tool to do so: matrices.

HKeffer, 1998 (Lecture Notes)
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9 Conclusion

Newton’s work was critical to the development of the method — it was his
thought experiments that sparked it. Hence, to him should be attributed the
success of conceptualizing the method. However, we should not disregard
the work of his successors; Raphson and Simpson, who made the contem-
porary application of the method explained in Part I of this essay possible.
It was Raphson who developed its direct iteration, and it was Simpson
who linked it with caleulus making it possible for the Method to then de-
velop in the twentieth century, as shown in Part II, to approximate solutions
for systems of n equations in n variables. These four critical points
represent the four steps that the Method went through: Conceptualization,
Development of Direct Tteration, Link with Calculus and Link with Matrices
& systems of equations. An evolution that took over 300 years.

However, when it comes to the Multivariate Newton Method, it was Simp-
son’s work that most significantly contributed to it. The ad-hoc multiples
were a foreshadowing of the work to come in the 20th Century, and inher-
ently the multivariate version of the algorithm should be named after the
Thomas Simpson, the man who first hinted at it, just as the Newton Method
is named after Isaac Newton.

Perhaps for this reason, and for pragmatic purposes, the Method is rightly
named after Isaac Newton. But he was not the Method’s sole father. The
method is instead the offspring of centuries of mathematical development and

holistic cooperation.

Ultimately it was not the work of one man, but the successive develop-
ment of the method throughout the ages that makes it so useful today. This
paper does not intend to designate one man as the master behind the method
(as others have before), but instead highlight how it was overlapping and
continuous work of all these men that contributed to the evolution of Isaac
Newton’s Numerical Method.

From an algebraic method for approximating roots of polynomials, to a
recursive algorithm for approximating solutions of multivariate non-linear sys-
tems using matrices, this method is a story of true mathematical continuity.

The knowledge continuum that moves science forward.

Words: 3800
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A Appendix

Extracts from Thomas Simpson’s "Essays On Several Curious
And Useful Subjects, In Speculative And Mixed Mathematics."

Page 81:

Case I, When only one Equation is given, and one Quantity
(x) to be determined.

Take the fluxion of the given Equation (be it what it will)
supposing z, the unknown, to be the variable Quantity; and hav-
ing divided the whole by z/let the Quotient be represented by
A. Estimate the value of & pretty near the Truth, substituting
the same in the Equation, as also in the Value of A, and let the
ErrorR, or resulting Number in the former, be divided by this
numerical Value of A, and the Quotient be sub-tracted from the
said former Value of x; and from thence will arise a new Value of
that Quantity much nearer to the Truth than the former, where-
with proceeding as before, another new Value may be had, and so

an-other, ete. "till we arrive to any Degree of Accuracy desired.

Page 82:

Case II, When there are two Equations given, and as many
Quantities (z and y) to be determined.

Take the Fluxions of both the Equations, consideringz and vy
as variable,and in the former collect all the Terms, affected with
xt, under their proper Signs, and having divided by x/, put the
Quotient A; and let the remaining Terms, divided byy/, be rep-
resented by B: In like manner, having divided the Terms in the
latter, affected with =/, by 2/, let the Quotient be put = a, and
the rest, divided byy/,= b. Assume the Values of zand y pretty
near the Truth, and substitute in both the Equations, marking the
Error in each, and let these Errors, whether positive or negative,
be signified by R and r respectively: Substitute likewise in the
values of A B a b, and let éi;:s‘g% d Eff;:fg be converted into
Numbers, and respectively added to the former Values of z and

y; and thereby new Values of those Quantities will be obtained;
from whence, by repeating the Operation, the true Values may be

approximated. ad libitum.
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