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Abstract

The research question for this essay is "To what extent was the
method of infinite descent conclusive in proving Fermat’s Last
Theorem?" Fermat’s Last Theorem is one of the greatest problems
ever encountered in mathematics, and it became a real fascination of
mine after reading about it. I discovered that the method of infinite TR
descent was a common appearance among these books, so I decided to wlih |

investigate how conclusive it was in proving Fermat’s Last Theorem and (X
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proofs themselves are not focused on in detail, only a brief summary of Hat rtela ccln

This essay focuses on the proofs used by Euler, Dirichlet and Kum-

mer, and how the method of infinite descent is used in each of them. The

how the proof works can be given seeing as how the proofs are exten- C\\.-.h\:i.-av'\ ARS
sive, although beautifully elegant. Euler’s proof of n = 3 was the first ot sk wmu M
looked at, as it presents the template for the method of infinite descent. AL
Dirichlet’s and Kummer’s proofs were then investigated afterwards, ob-
serving how the method of infinite descent evolved to work for different
exponents of Fermat’s Last Theorem.
The method that Ernst Kummer used to prove Fermat’s Last The-
orem for specific exponents was at first made for regular primes, but
was then adapted for irregular primes. This led to Fermat’s Last The-
orem being proved for all prime exponents up to 4 million with the aid
of computers. This might seem conclusive enough, since 4 million is a
relatively large number, however no one knows for sure that it might not
work for prime numbers above 5 million. Therefore the conclusion is that
the method of infinite descent is useful in giving an idea as to whether

Fermat’s Last Theorem is true or not, but it willinever conclusively prove
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1 Introduction to Fermat’s Last Theorem
(FLT)

1.1 Pythagoras Theorem

Fermat’s Last Theorem is known to be one of the greatest mathematical
problems the world has ever encountered. Its simple look is deceiving,
troubling mathematicians for 350 years until Andrew Wiles cracked it in
1995. The history of this problem starts in the sixth century B.C. with
Pythagoras of Samos. During this essay I shall be referring to Fermat’s
Last Theorem as FLT.

As Simon Singh said in his book ‘Fermat’s Enigma’, “Usually half the
difficulty in a mathematics problem is understanding the question, but
in this case it was straightforward-...”! The problem of Fermat’s Last
Theorem looks very familiar to most people as it is based on Pythagoras’

Theorem, a theorem engraved in millions of people’s brain:

\w’\QBA’\-; w )\Q-ﬂ S

( Z#4y=2"

Pythagoras of Samos and his bljof.herhood in Croton, Italy, managed
to find a very elegant. proof for this, one of their biggest successes, subse-
quently leading to one of the grggiest math%matica] problem of all time.

\,u\\_cs *‘ .

1.2 The beginning of Fermat’s Last Theorem

Inevitably, this led to mathematicians asking themselves what would
happen if the power in the equation was changed from ‘2’ to ‘3’ so that
it looked like this:

2+ =21

1Singh 1998, p.6
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No one knew that they had unleashed a monster of an equation, and

although finding solutions to Pythagoras theorem, also called Pythagorean

triples, was relatively easy, finding solutions to this new modified ver-
sion s%beimpossible. If the power in the equation is changed
to an even higher number, finding solutions appears to be equally im-
possible. For centuries, mathematicians tried to find solutions to these

modifications of Pythagoras’ theorem with no success. This led the great

seventeenth-century French mathematician Pierre de Fermat to believe
that the reason nobody could find any solutions was because there were
no solutions. In the margin of his copy of Diophantus’ Arithmetica, he

&g \’M\“M
Proposntng n 1 [t is impossible for a cube to be written as a sum of two

cubes ué%

or, in general, for any number which is a power greater than the second

noted his observations:

oag?tﬁ power to be written as the sum of two fourth powers

to be written as a sum of two like powers. er{\ \\Su.gu-cf

This gave birth to an adventure that would last 350 years to prove
Fermat’s Last Theorem with some successes but many failures. The ﬁjj,
success would come with Leonhard Euler in the 18th century when he
discovered a proof for the case where the power of the equation is 3.

Spet LcJ{ CaseS f
2 Proofsﬂof Fermat’s Last Theorem |

2.1 Euler and the method of infinite descent

The method of infinite descent was the first method used to try and solve
Fermat’s Last Theorem for specific exponents, the first ones being n = 4
and later on n = 3. This method is a particular form of proof by con-
tradiction (see further) and it is seen in Fermat’s jottings in Arithmetica
by Diophantus. Felmat used thjs method to prove the case for n = 4,
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and this is the most complete calculation by Fermat he ever committed
to paper. ;!cJ W, HL Wrole 0 Wan ) 6 Yl %\;w-)‘a

The method of infinite descent is very simple to understand. You
begin by assuming that there is a solution to Fermat’s Last Theorem for

n=14:

(
e=Xify=Yi/z= 2 00 IT

After examining the properties of this solution, you can show that if
this solution does exist, then there must be a smaller solut;(_); (Xo, Ys, Z3).
If you then examine this solution, you can find an even smaller solution
(X3,Y5, Z3). This can be done infinitely many times, finding infinitely
many smaller solutions. However, the solutions to Fermat’s Last Theo-

rem must be whole numbers, therefore you cannot have infinitely many

smaller solutions thag arg whole numbers so you reject the assumption

that there is a 'so Ferm_aﬁs Las_tgi"I‘h_eorem for n = 4.

Leonhard Euler saw this proof by Fermat and used this as his starting
point for finding a general proof to prove all other cases of FLT. Euler
started by attempting to prove FLT for n = 3. He adapted this method
of infinite descent used by Fermat and was able to prove it. This was the
first major breakthrough on FLT since Fermat himself, and it motivated
more mathematicians to start working on it. In the following section
I will show how Euler proved that there were no solutions to Fermat’s

Last Theorem for n = 3 using the method of infinite descent.

2.1.1 Euler’s proof for n =3

“The first thing Euler did was to assume there was a solution for Fermat’s
Last theorem for the case where n = 3.

An important part of the whole proof is showing that different num-

*BEdwards 2000
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bers are copri'me:‘/"'TThe first time he does this is when he shows that
a1,z are coprime. To do this he proved that il an integer d divides 2
numbers in Fermat’s Last Theorem, then d" divides the nth power of
the third. After that he proved that if d" divides 2™ then d divides that
number x. By doing this he showed that if 2 of the numbers in FLT have
a greatest common divisor larger than 1, then this number also divides
the 3rd number. Therefore you can divide all of them by that number
and keep doing this until they are coprime.

Euler then went on to show that if x,y, z are coprime, then there

exist two integers p, g such that:
L. ged(p,q) =1 oo GML‘:’\‘"A

2. p,q are positive RN o \.-q,d{
3. p, ¢ have opposite parity (one is odd, one is even) )
4. 2p(p? + 3¢%) is a cube /

He later proved that the greatest common divisor of 2p, p? + 3¢* can
only be 1 or 3. Euler did this by showing that the greatest cormmon
divisor cannot be 2 because p? + 3¢* is odd and it can’t be any prime
larger than 3 by showing that it would divide both p and ¢, going against
p and g being coprime.

By doing this, Euler can show that (2a)(a — 3b)(a + 3b) is a cube
because (2a)(a — 3b)(a+3b) = 2a® — 18ab? = 2p (2p is a cube). Again he
shows that 2a, a — 3b, a + 3b are coprime so that each of them is a cube.

And thus he found a new solution to Fermat’s Last Theorem for n = 3
since A% = 2a = (a+3b) + (a— 3b) = B?+ C”. He then showed that this
new solution is smaller than the previous solution. This argument can
be done infinitely many times and so there is a case of infinite descent.
Since the solutions to Fermat’s Last Theorem must be whole numbers,
this is contradictory so he rejects the initial assumption that there exists

a solution to Fermal’s Last Theorem for n = 3.

3Coprime: Two integers a, b are said to be coprime if their greatest common divisor
is 1 (they have no common positive divisor other than 1)
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In this proof we see the fundamental principles of the method of infi-
nite descent. BEuler assumed a solution existed, and through some heg
number theory, (greatest common divisors, and proving two numbers are
coprime) Euler was able to prove that if a solution did exist, then an-
other solution must exist. This solution 2a, a — 3b, a + 3b is shown to be
smaller than the first solutions and this process can be repeated infinitely
many times, which would make no sense. Therefore there is no solution
to FLT for n = 3. The original proof for n = 3 is much longer than
the condensed version I have presented, as I have only éwhav;ii the most,
important parts of the a@uiﬁﬁf_ﬁéding to the final conclusion. This
method was adapted from Pierre de Fermat’s proof of n = 4, and it was
the first major breakthrough of Fermat’s Last Theorem after Pierre de
Fermat himself. Mathematicians went back to work, and the method of
infinite descent seemed promising to give a final proof for all exponents
of Fermat’s Last Theorem.

2.2 Dirichlet, Sophie Germain’s Theorem, proof by

contradiction

Proof by contradiction is a very popular form of proof in the world of
mathematics, and can be seen in many cases, for example proving the
irrationality of v/2. It is very similar to the method of infinite descent
seen previously, as that itself is a type of proof by contradiction. To
explain how proof by contradiction works, I will use the example of
proving the irrationality of V2.

You start by assuming that something is true, in this case you assume
that /2 is rational. If v/2 is rational, then it can be written as a fraction
%. By doing some calculations we can then find that this fraction can be
simplified:

Lyv2=t

2. Square both sides: 2 = 1’;
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3. Multiply by ¢*: 2¢* = p*

4. From this we can see that p? must be even, so p must also be even.
Therefore, we can substitute 2m for p: 2¢* = (2m)? = 4m?

5. Divide both sides by 2: ¢* = 2m?

6. Here we have the same situation as before, ¢ is even therefore ¢
must be even. We can then say that ¢ = 2n. From this we have found
that v/2 = %:" =

7. We now have a fraction that is simpler than g which is 7

8. This argument can be repeated over and over again to find simpler
fractions. However we know that fractions cannot be simplified forever
therefore we must reject our assumption that v/2 is rational.

We can see that this proof by contradiction, is actually another case

= NO /

of the method of infinite descent. Johann Dirichlet used this method to

aﬁm—pmkcase for n = 5. Dirichlet completed part of the
proof for n = 5, and the whole proof was then completed by Adrien-
Marie Legendre. This proof uses Sophie Germain’s Theorem, named
after Sophie Germain that deals with the divisibility of the solutions of
FLT, which I will explain in the proof for n = 5 in the following section.

2.2.1 Dirichlet’s proof for n =5

4 Just like Euler did, Dirichlet started by assuming there was a solution
to Fermat’s Last Theorem and proving that the solutions z,y, z were
coprime. Dirichlet then made the assumption that z, y are odd and z is
even, because there can only be at most one even number since they are
all coprime but there must be at least one even hecause odd+odds#odd.

Dirichlet used Sophie Germain’s Theorem to help him prove this case
of Fermat’s Last Theorem. Sophie Germain’s theorem said that if Fer-
mat’s Last Theorem is true for any prim nz 3 and if Qﬁ}l- 1 is a prime,

thm}"ﬁ}{nust divide the product zyz. He used this theorem to show that
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cither 5 divides z or it divides x, . N o\ E-Q—'-LM’ \'V\Y\u ,

Dirichlet then assumed that 5 divides z and showed a case of infinite
descent by showing that if there is a solution, there must be a smaller
solution. Therefore, if 5 divides z, there are no integer solutions. He
also showed that if 5 divides « or y (doesn’t matter which since they are
symmetric) then there are also no integer solutions by using the method
of infinite descent once again.

The proof that Dirichlet used to prove Fermat’s Last Theorem for
n = 5 showed lots of similarities to the previous proof by Euler for n = 3,
the main one being that they both used the method of infinite descent
to prove that there couldn’ be any solutions. A considerable amount
of number theory was again used, the concept of coprime numbers and
greatest common divisors being used constantly to develop the argument
further. The method of infinite descent was the key to proving Fermat’s
Last. Theorem for n = 5, however it needed an extra bit of help from
Sophie Germain’s theorem. For nn = 3,4 the method of infinite descent
alone was enough to prove Fermat’s Last Theorem, but for this case
something else was needed to come to the final conclusion. Doubts about
the method of infinite descent being used to prove Fermat’s Last Theorem
completely started appearing, but people had faith in it, and so continued

to use it to carry on proving specific exponents.

2.3 Lamé and Kummer: Cyclotomic Integers to prove
FLT

In 1847 the French academy of sciences set up an award and offered
prizes, of which one was a gold medal and 3,000 francs, to whoever
could prove Fermat’s Last Theorem once and for all. Mathematicians
were given an extra motivation to go and prove FLT, as apart from the
personal satisfaction of proving it, there was a respectable sum of money

involved as well. Various rumours were running around France as to who

7
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was using which methods and how close people were to actually proving
it. The big shock came on the 1st of March 1847, in the hands of Gabriel
Lameé.

2.3.1 Lamé’s idea of a final proof

Gabriel Lamé had proved FLT for the case n = 7 and was now stepping
up in front of the meeting of the French academy of sciences and made
it known that he was on the verge of proving Fermat’s Last Theorem.
Lamé’s idea was very simple and could potentially work if it were not
for the flaw in his logic that Liouville and Kummer pointed out later.
Lamé realized that in the previous proofs for the cases n = 3,4, 5,7, a lot
depended on an algebraic factorization of some sort. An example would
be in the case for n = 3, where 2® + 33 is factorized into (x + y)(z* —
xy+y*). Lamé noted that as n becomes very large, it becomes harder to
factorize as the degree of the polynomial becomes very large. Therefore,
Lamé thought of using complex numbers to factorize 2" 4 y" completely
into linear factors. The only way this can be done is by inputting a
complex number o such that o™ =1 where(r} # +1.) The equation would
then look like this: \"*_‘\;3\« P &v\.rr\\x l.

2" +y" = (z+y)(z + ay)(z + o’y)...(z + " y)

Once Lamé had this equation, all that was left for him to do was prove
that all the linear factors are coprime, i.e. their greatest common divisor
is 1. This would mean, as seen in the other proofs earlier, that each
linear factor is an nth power and from this he would then demonstrate
a case of infinite descent which would prove FLT. It seemed as though
with the help of complex nmumbers, the method of infinite descent would
prove Fermat’s Last Theorem once and for all. It had been used for
n=3,4,5"7, and had worked perfectly so people were becoming more
convinced that this would finally give the solution everyone was looking

8




for.

However, Lamé missed out a minor detail, but a detail that would
ultimately make all his work up to then useless. After Lamé’s presen-
tation, Liouville came up on the podium, and showed everyone Lamé’s

unfortunate faw in his proof.

2.3.2 Liouville’s discovery of Lamé’s flaw

We all know that integers can only be fully factorized in one way, for
example the number 76 is factorized to 76 = 22 % 19 and it can’t be
factorized in any other way. In other words, “there is only one possible
combination of primes that will multiply together to give any particular
integer greater than 17°. Lamé’s proposed proof depended on this theo-
rem, however he had failed to consider if complex numbers could also be
factorized uniquely and Liouville was there to point this out. This didn’t
stop Lamé though, as he realized that the law for integers also worked
for complex numbers when n = 5. He was determined to carry on with
his work.

However, later on, Liouville read a letter from Ernst Kummer, a
German mathematician, stating that Liouville was correct when he was
questioning Lamé’s use of unique factorization on complex numbers. Ap-
parently, Kummer had proved this in a memoir he had published three
years earlier. After this, Lamé deserted his attempts to prove Fermat’s
Last Theorem and Kummer continued this work, trying to find an alter-

native.

2.3.3 Kummer and cyclotomic integers

The problem which Kummer posed was the breaking up of numbers

built up from o by repeated addition, multiplication and subtraction

———

into prime factors. The mumbers look like this:

9Singh 1998, p.114
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ap + oqe + aga® + ... + a1t L1 W%\r bl

In this number, ay, as, ..., ax_; are integers. Kummer used the letter
)\ to represent a prime number and say that a* = 1, (a #(£1). These
complex numbers are known as cyclotomic integers. Since o = 1, Kum-
mer reduced all the powers of the equation by saying that o' = a, I
T e Al W+ V‘*“B v [a)2  Knamer's wovi wan dee]@v :

An interesting property of eyclotomic integers that will be needed

o

later to prove another property is that “representations of cyclotomic

integers in the form as seen above are not unique”®.

An example of
a(l4+a+a?+...4+a*1). This implies that either 1+a+a’+...4+a* 1 =0 f h'
or a = 1. Kummer had already assumed that « # 1 therefore the former )
g Y iwey | \ood
must be true. S ¢ Lntimanplete Rta UM ng | MNok Lundeyy -

Another property of cyclotomic integers that was necessary for Kum-

this would be that 1 +a+a? + .. +ar ' =a* +a+a?+ ...+ a1 = /z’%)

mer to try to prove Fermat’s Last Theorem is the norm of a cyclotomic f /
integer. The norm of a cyclotomic integer f(os)) would be written as Lu\.aL 1S s ,
( Nf (a)')a.n{d it is defined as “the product of A =1 conjugates of f(a)"":
A2\ '\‘TF\I/ ’ . .
W D‘\” " at- , - 5.4 (O.? Co‘-{\'e_:( waM*J\x,\' w
Nf(a) = fla)f(a”)...f (a"") ¢

He then established that the norm of any cyclotomic integer is an
integer itself. The proof for this is fairly simple. We must first note
that if we convert o — of(j = 1,2,...,A — 1) this only rearranges the (/J\MVP | J(
factors of N f(a) but does not change the norm. Thus, we have that - 0

\A«a&etlu.a'{.c

Nf(a) = ¢ + cra + cga® + ... + ey (z) co + ared + ca® + ...+ ’
ex_1a*~17 . From this we can say that ¢y — ¢g = ¢j — ¢; = 0. Therefore O ‘l‘-l\(

' i gt y
ci=c,(=123,..,2-1)and N f(a) = +c1(a+a’+...+a*1).From wmu‘-bﬂ\'m [ l
earlier, we know that 1 + a + o® + ... + o** = 0 and so we know that

SEdwards 2000, p.82
"Edwards 2000, p.83 / 9




ata?+..+a* 1 = —1. Hence N f(a) = cp+e1(ata? .40 1) = eg—¢y
which is an integer.

If a cyclotomic integer is found to have norm 1, this integer is then
called a unit. A cyclotomic integer h(e) which is irreducible (it cannot
be factored into two primes) only has the factorizations h(a) = f(a)g(w)
where either of them is a unit. If one was talking about ordinary integers
here, they would be tempted to then call h(a) prime. However, when
talking about cyclotomic integers, just because it is irreducible, does not
mean it is prime. Another factor that has to be taken into account for
a cyclotomic integer to be prime is that “there must exist cyclotomic
integers that it does not. divide and if the product of any two cyclotomic
uitf_g_eliy_c_(ﬁ)is_;l_p_t_gwmc, is itself'¢ cyclot(nmc integer it does not divide”®.
The fact that a cyclotomic mteger can be irreducible but not prime
is the main problem that causes the failure of unique factorization for
cyclotomic integers.

Now Kummer had to apply this to try and prove Fermat’s Last The-
orem. His problem now was that he had to factor binomials of the form
x4+ a’y and also find all possible prime factors to those binomials. This
would then show if (2 + y)(z + ay)(z + o?y)...(x + o 'y) were rela-
tively prime so that he could prove FLT. Kummer was aware that not
all cyclotomic integers could be factorized in only one way and so he
introduced the concept of ideal 1 nu.mbers Kummer’s discovery was that
“the set of all complex integers defined by an nth root of unity could
be so enlarged by the introduction of ideal numbers that unique factor-
ization into primes would prevail in the enlarged set”’. An example of
how ideal numbers can help make unique factorization possible is shown
below:

1. 25 can be factorized into 5 * 5 or it can also be factorized into
(4 —0)(4+ 6) where 8 = 3i

8Edwards 2000, p.84
9Dickson 1917, p.170
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2. This problem of unique factorization can be solved by the intro-

duction of a,f, v ideal prime numbers such that:

5 = aff
4-0 = a?
440 = B

Now each factor of 25, breaks down further into ideal prime numbers

such that 25 = a?#? so that now there is only one way to_ factorize 25.
The introduction of ideal nmnbg ht,lped to save unique factcrlma—
tion for complex numbers and Kummer was able to prove Fermat’s Last
Theorem for all regular primes, but not for the irregular primes which
occur around 39% of the time. Kummer’s method was later extended to
irregular primes in the 20th century and his method was then inputted
into computers so that the computers could carry on proving cases for
Fermat’s Last Theorem. By 1993, Fermat’s Last Theorem had been
proved for all prime numbers up to 4 million. Fermat’s Last Theorem
only needs to be proved for prime numbers as every other number is
built up from prime numbers therefore it could be re-written with the
exponent as one of the primes. Thanks to Ernst Kummer, the method
of infinite descent prevailed and was used right up until the final proof of
Fermat’s Last Theorem to prove specific exponents. Some people might
say that Fermat’s Last Theorem is true simply because so many cases
have been proved, and it seems as though this will carry on working for
all other exponents. However, mathematicians are never satisfied with
the finite, only with the infinite. 1t could be that Fermat’s Last Theorem
is false when the exponent is 5 million. Only when Andrew Wiles proved
Fermat’s Last Theorem for all possible exponents, were mathematicians

satisified that it was true.
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3 Conclusion

This wasn’t the end of the history of proving Fermat’s Last Theorem.
Goro Shimura and Yutaka Taniyama would create the Taniyama-Shimura
conjecture. Frey would then link this to Fermat’s Last Theorem and
whoever could prove the Taniyama-Shimura conjecture would then sub-
sequently prove Fermat’s Last Theorem and that someone was Andrew
Wiles. 10

The method of infinite descent was the key to the first proofs of
Fermat’s Last Theorem. The pure method created by Pierre de Fermat
himself, is seen in both his and Euler’s proof of FLT for n = 3,4 and it
is both simple yet solid. In the proof for n = 5 by Dirichlet, you can see
the method of infinite descent being used along with Sophie Germain’s
theorem about the divisibility of solutions to Fermat’s Last Theorem to
show that there are no solutions and we can also see many aspects that
are similar between Dirichlet’s proof and Euler’s proof.

Later on it seemed that the method of infinite descent would be the
key to proving Fermat’s Last Theorem completely. Lamé proposed a way
to do this, by factorizing using roots of unity and cyclotomic integers,
and then using the method of infinite descent to show that there couldn’t
possibly be a solution in the first place. Liouville and Kummer however
crushed this proposed proof because a cyclotomic integer does not abide
to the laws of ordinary integers when talking about unique factorization
into prime numbers.

Kummer however, picked this method up again and by introducing
the concept of ideal numbers, he was able to prove Fermat’s Last Theo-
rem for regular primes using this method of factorizing and then proving
a case of infinite descent. Kummer’s method then lived on and was
adapted to be able to prove Fermat’s Last Theorem for irregular primes

as well and computers were able to prove it for all primes up to 4 million

108ingh 1998
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by 1993.

The method of infinite descent was a beautiful and elegant way
to prove Fermat’s Last theorem and it is usual for mathematicians to
strongly believe in something elegant. The method works perfectly for
specific exponents, with a few adjustments along the way, the main ones
being Sophie Germain’s theorem, the introduction of ideal numbers, and
also an adaption of this method to work for irregular primes. However,
how conclusive was the method of infinite descent in proving Fermat’s
WALARY ZX Last Theorem? From a 91_01*_[1_1&1 person’s perspective, it is perfectly ac-

ceptable, as proving a theorem for all prime numbers up to 4 million
seems to be solid evidence. However, from a mathematician’s perspec-
l tive, the method of infinite descent was nowhere near conclusive in prov-

Go {on | mg Felmat s Last Theorem. The actual proof is very different, using

| mu(,h more complex mathematics concerning elliptic curves and modular
forms. The method of infinite descent helped to motivate mathemaiti-
cians to carry on working on Fermat’s Last Theorem, and other proofs 1
emerged fro o1 Lt as well such as provmg the ura,tloua,hty of \/_ Over- Wit vt
all the method “of infinite descent was a great dlscovcry in the world of
mathematics, but was only partly successtul in proving Fermat’s Last

Theorem from a mathematicians perspective.
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